GCSE Electronics Unit E2 4162-01

All Candidates' performance across questions

Question Title	N	Mean	S D	Max Mark	F F	Attempt \%
1	499	0.6	0.5	1	55.9	100
2	499	1.3	0.7	2	65.6	100
3	499	2.2	0.9	3	73.4	100
4	499	2	1.1	3	67.4	100
5	499	0.7	0.5	1	68.1	100
6	499	2	1	3	66.6	100
7	499	0.5	0.5	1	50.1	100
8	499	1.1	0.8	2	56.8	100
9	499	2.7	0.8	3	89.4	100
10	499	1.5	1.2	3	51.2	100
11	499	2	1.2	3	65.3	100
12	499	1.7	0.9	3	57.2	100
13	499	1.7	1.1	4	41.3	100
14	499	2.3	1.5	4	58.6	100
15	499	0.9	1.2	3	30.9	100
16	499	2.1	1.5	4	52.5	100
17	499	1.3	0.8	2	67	100
18	499	1.6	1	3	52.6	100
19	499	1	0.8	2	52.4	100
20	499	1.6	1.3	3	53.3	100
21	499	2.1	1.6	5	41.6	100
22	499	1.2	1	2	58.4	100

GCSE Electronics Unit E2 4162-01

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.

10. A rising-edge triggered D-type flip-flop is used for data transfer.

Complete the graphs to show the Q and \bar{Q} outputs.

18. (a) Which one of the following is the best description of the term bandwidth?
(Tick (\checkmark) the correct answer.)
\square The maximum frequency of the input signal.
\square The input voltage range that can be amplified successfully.
\square The range of frequencies that produces more than a specified voltage gain.
\square The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
(i) the voltage gain at which the bandwidth should be measured;
Voltage gain =
\qquad
(ii) the bandwidth.
18. (a) Which one of the following is the best description of the term bandwidth? (Tick ($($) the correct answer.)

The maximum frequency of the input signal.
The input voltage range that can be amplified successfully.
The range of frequencies that produces more than a specified voltage gain.
The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
(i) the voltage gain at which the bandwidth should be measured;

Voltage gain $=$ \qquad -
(ii) the bandwidth.

Bandwidth = \qquad 5000 Hz
18. (a) Which one of the following is the best description of the term bandwidth? (Tick (\checkmark) the correct answer.)

The maximum frequency of the input signal.
The input voltage range that can be amplified successfully.
The range of frequencies that produces more than a specific \triangle outage gain.
The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
(i) the voltage gain at which the bandwidth should be measured;

Voltage gain \qquad 70 -
(ii) the bandwidth.

Bandwidth = \qquad 5000 Hz
18. (a) Which one of the following is the best description of the term bandwidth? (Tick ($/$) the correct answer.)

\squareThe maximum frequency of the input signal.

\squareThe input voltage range that can be amplified successfully. The range of frequencies that produces more than a specified voltage gain. The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
(i) the voltage gain at which the bandwidth should be measured;
Voltage gain =

(ii) the bandwidth. Hz
18. (a) Which one of the following is the best description of the term bandwidth? (Tick (\checkmark) the correct answer.)

\squareThe maximum frequency of the input signal.

\squareThe input voltage range that can be amplified successfully. The range of frequencies that produces more than a specified page gain.
\square The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
[2]
(i) the voltage gain at which the bandwidth should be measured;

Voltage gain $=$

(ii) the bandwidth.

Bandwidth = \qquad Hz
18. (a) Which one of the following is the best description of the term bandwidth? (Tick ($/$) the correct answer.)
\square The maximum frequency of the input signal.

\squareThe input voltage range that can be amplified successfully.The range of frequencies that produces more than a specified voltage gain.
\square The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
(i) the voltage gain at which the bandwidth should be measured;

$$
6000 \div 100
$$

Voltage gain $=\ldots(\ldots)$
(ii) the bandwidth.

$$
0.7 \times 100
$$

Bandwidth = \qquad Hz
18. (a) Which one of the following is the best description of the term bandwidth? (Tick (\checkmark) the correct answer.)
\square The maximum frequency of the input signal.

\squareThe input voltage range that can be amplified successfully. The range of frequencies that produces more than a specified voltage gain.
\square The power supply voltage that produces optimum output voltage for a given signal.

(b) Use the graph to find:
(i) the voltage gain at which the bandwidth should be measured;

$$
6000-100
$$

\square Voltage gain $=$

(ii) the bandwidth.

$$
0.7 \times 100
$$

Bandwidth $=$

20. A Schmitt inverter is connected to a temperature sensing unit.

The circuit runs on a 15 V power supply.
Part of the data sheet for the Schmitt inverter is shown below.
When connected to a 15 V supply:

- Logic 0 output $=0 \mathrm{~V}$;
- Logic 1 output $=15 \mathrm{~V}$;
- The output changes from logic 1 to logic 0 when a rising input voltage reaches 10 V ;
- The output changes from logic 0 to logic 1 when a falling input voltage reaches 5 V .

The output of the temperature sensing unit is shown in the top graph.
Use the axes provided to draw the corresponding output signal of the Schmitt inverter, when the signal from the temperature sensing unit is applied to its input.

The output of the temperature sensing unit is shown in the top graph.
Use the axes provided to draw the corresponding output signal of the Schmitt inverter, when the signal from the temperature sensing unit is applied to its input.

Output of temperature sensing unit

Output of Schmitt inverter

The output of the temperature sensing unit is shown in the top graph.
Use the axes provided to draw the corresponding output signal of the Schmitt inverter, when the signal from the temperature sensing unit is applied to its input.

Output of temperature sensing unit

Voltage/V

Voltage/V

Output of Schmitt inverter

The output of the temperature sensing unit is shown in the top graph.
Use the axes provided to draw the corresponding output signal of the Schmitt inverter, when the signal from the temperature sensing unit is applied to its input.

Output of temperature sensing unit

Voltage /V

The output of the temperature sensing unit is shown in the top graph.
Use the axes provided to draw the corresponding output signal of the Schmitt inverter, when the signal from the temperature sensing unit is applied to its input.

The output of the temperature sensing unit is shown in the top graph.
Use the axes provided to draw the corresponding output signal of the Schmitt inverter, when the signal from the temperature sensing unit is applied to its input.

